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Transient Turing patterns in a neural field model
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We investigate Turing bifurcations in a neural field model with one spatial dimension. For some parameter
values the resulting Turing patterns are stable, while for others the patterns appear transiently. We show that
this difference is due to the relative position in parameter space of the saddle-node bifurcation of a spatially
periodic pattern and the Turing bifurcation point. By varying parameters we are able to observe transient
patterns whose duration scales in the same way as type-I intermittency. Similar behavior occurs in two spatial

dimensions.
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I. INTRODUCTION

Spatiotemporal pattern formation in regions of the brain
has been a topic of great interest for a number of years
[1-11]. Because of the relative spatial scales of the patterns
of activity and individual neurons, continuum models, in
which space is taken as a continuous variable, are often used.
The patterns studied include spatially localized “bumps,”
modeling working memory and feature selectivity in the vi-
sual cortex [8,12,13], traveling waves [7,14], and spatially
periodic patterns [15-17].

The formation of periodic patterns in the visual cortex has
been proposed as the mechanism behind geometric patterns
perceived during hallucinations [6,18-20], and a common
mechanism for the formation of spatiotemporally periodic
patterns is a Turing bifurcation in which a spatially uniform
solution becomes unstable to spatially periodic perturbations
with a range of wavelengths [21]. Such bifurcations in neural
field models have been studied by several authors
[5,10,11,16,17].

In this paper we are interested in pattern formation be-
yond a Turing instability in the model of Laing er al. [22]

?=—u()€,t)+fQ w(x = y)flu(y,n)ldy, (1)
where
w(x) = e ?K(b sin|x| + cos x) )
and
F) = 2H(u - O)e =", )

where H is the Heaviside function. Here, u(x,?) is the aver-
age voltage, or activity level, of a neuronal population at
spatial position x and time ¢. The parameter b governs the
rate at which oscillations in the coupling function w decay
with distance. The firing rate function f in Eq. (3) models
neurons firing once threshold is reached and tends to a maxi-
mal limit as the stimulus is increased. Parameter 6 is the
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firing threshold and r is the steepness parameter.

The main difference between this model and those previ-
ously studied is the form of the coupling function, which is
oscillatory rather than of “Mexican-hat” type [3,6]. This de-
caying oscillatory form was motivated by labeling studies
showing that spatially approximate periodic stripes are
formed by coupled groups of neurons in the prefrontal cortex
[23]. Only spatially localized patterns have previously been
studied for this model [22,24], and the oscillatory nature of
the coupling function is likely to lead to novel behavior [25].

Our goal is to use the analytical stability analysis of Hutt
et al. [16] to investigate Turing instabilities in Egs. (1)—(3).
Since the trigonometric functions in w have period 27 we
choose a domain Q=[-107r,107], with periodic boundary
conditions. (The effects of a different domain size are dis-
cussed below.) In Egs. (2) and (3), we have b,6>0 and set
r=0.095.

The paper proceeds as follows. First, we find spatially
uniform steady states of the model in Egs. (1)—(3). We then
use linear stability analysis to find regions of parameter
space where Turing instabilities can occur. In Sec. II C nu-
merical simulations of the full model show that spatially uni-
form steady states can go unstable to both stable and tran-
sient Turing patterns, depending upon parameter values.
Through bifurcation analysis of periodic patterns we find that
the stability of Turing patterns is due to the position of the
saddle-node bifurcation of a spatially periodic pattern in re-
lation to the parameter value at which the Turing instability
occurs. In Sec. I E we show that the transiency of some
solutions is related to type-I intermittency, and in Sec. Il F
we extend the analysis to two spatial dimensions. The appen-
dix contains details of the numerical continuation of periodic
orbits.

II. ANALYSIS AND RESULTS
A. Spatially uniform states

We first find spatially uniform steady states of Egs.
(1)—(3). Let u* be the value of u at one of these states. Since
60> 0, one solution is u*=0. Nontrivial values of u* satisfy

u* = Wf(u®),

where
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FIG. 1. Spatially uniform steady states u* of Egs. (1)—(3) as a
function of 6, as given by Eq. (4). The curves from bottom to top
are for b=0.25,0.50,0.75, respectively.
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(4)

Given b, Eq. (4) has one or three solutions, depending upon
the value of 6. Figure 1 shows u* as a function of 6. With
respect to spatially uniform perturbations, the zero and upper
steady states are always stable (solid lines) and the middle
steady state is unstable (dashed lines). The two nonzero
steady states are destroyed in a saddle-node bifurcation as 6
increases.

B. Stability

To find a possible Turing bifurcation point we use the
linear stability analysis of Hutt e al. [16]. Let u* to be the
upper spatially uniform steady state found in Eq. (4) and let

o

ul,d) =u*+ D u, exp(ik,x + \,t),

n=—0w

where k,=2mmn/|Q|=n/10. Substituting into Eq. (1) and
keeping first order terms we obtain

N, =—1+9yW,,
where y=f"(u*) and

W 4b(b* + 1[1 - (= 1)"e™'7]
WP 20— 1D) + 1

We see that A\, € R, so no oscillatory bifurcations are ex-
pected. Bifurcations do occur when A,=0, that is, when

1 (PP k)20 k) + 1 S
W, 4b(b>+ D[1 - (= 1)~ 107 (5)

s

Y=Y

Since W,>0, the uniform steady state loses stability as y
increases through v*. Now dvy*/dk,>0 for b>1, so in this
case u* will go unstable to a perturbation with k=0, i.e., to
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FIG. 2. v* as a function of k,, for »=0.25,0.50,0.75. The wave
numbers k,=n/10 are indicated by circles, asterisks, and diamonds
for 5=0.25,0.50,0.75, respectively. For b=0.25, the horizontal line
of v indicates the onset of instability and a dominant unstable wave
number of k,=1.0.

another spatially uniform state. When 0<<b<'1, v*(k,) has a
minimum at k,=1-b?, and there will be a spatial pattern of
wavelength k,, appearing when y=y*(k,,), where m is the
integer for which y*(k,,) is minimized over all k,. Figure 2
shows y* as a function of k, for 5=0.25,0.50,0.75. For b
=0.25, the horizontal line shows y=vy* and indicates the on-
set of instability. The unstable wave number is k,,=1.0, hence
n=10. (Recalling that k,=27n/|Q}|, we see that for a differ-
ent domain size, periodic perturbations with n# 10 may be
the most unstable.) As 6 is varied further, y increases
through y* and u™* loses stability to a spatial perturbation.
For £=0.50, the dominant unstable wave number is k,=0.9,
so n=9. For b=0.75, the dominant unstable wave number is
k,=0.7, therefore n=7.

In Fig. 3 we show curves corresponding to Turing bifur-
cations for n=8, 9, and 10, over a range of b values. The
upper fixed point is stable to the left of the leftmost curve.
We see that for 0.47 <b<0.5, the uniform steady state goes
unstable to a pattern with n=9 as 6 is increased, whereas for
0.25<b<0.3, a pattern with n=10 appears. Also shown is
the curve of saddle-node bifurcations of the upper and
middle spatially uniform fixed points. To the right of this,
these states do not exist.

C. Simulations

We now show the results of simulations of Egs. (1)—(3) to
confirm the above analysis. We discretize () into a uniform
grid of 501 points, and the convolution term is approximated
by a Riemann sum. We set b and, using Eq. (5), choose 6
such that the upper nonzero spatially uniform steady state
given by Eq. (4) will be unstable to a spatially periodic pat-
tern through a Turing instability. As an initial condition we
use the steady state plus a small random spatial perturbation.
A typical Turing pattern that appears is shown in the top
panel of Fig. 4. This pattern has n=10, as expected. How-
ever, if we choose another set of parameter values, such as
b=0.5, 6=1.94, we see the behavior in the bottom panel of
Fig. 4. Here a pattern with n=9 emerges, as expected, but it
is transient and the system moves eventually to the spatially
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FIG. 3. Curves of Turing instabilities for n=8,9,10 (dashed-
dotted, solid, and dashed, respectively). Also shown is the curve of
saddle-node bifurcations of the upper and middle fixed points
(circles joined by solid line).

uniform zero steady state. This behavior was unexpected, as
(to our knowledge) transient Turing patterns have only been
observed in chemical systems [26,27], and there, the tran-
siency is due to chemical species in a closed system eventu-
ally being consumed.

It seems that for b small, there does exist a stable periodic
pattern to which the system is attracted once the Turing bi-
furcation occurs, whereas for larger b, such a stable pattern
does not exist. We now investigate this by finding spatially
periodic patterns and following them as parameters are var-
ied.

D. The role of periodic orbits

The computational details of following periodic orbits are
given in the appendix. First, we consider 5=0.25. The top
panel of Fig. 5 shows the solution curves of eight-, nine-, and
ten-bump periodic solutions. Stable solutions are indicated
by solid lines and unstable solutions by dashed lines. As 6 is
increased, ten-bump solutions are the last to be destroyed in
a saddle-node bifurcation. Vertical lines indicate the value of
0 for which a Turing instability occurs. The smallest value of
6 for which a Turing instability can occur is for instabilities
with the wave number k,=1.0, that is, n=10. Thus a ten-
bump periodic solution will always arise in a Turing insta-
bility for these parameter values. The saddle-node bifurca-
tion of the upper and middle fixed points is given by the
circles joined by solid lines. A nontrivial spatially uniform
steady state cannot exist to the right of this line. To the left of
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FIG. 4. (Color online) Top: A stable Turing pattern for b=0.25,
6=0.63. Bottom: A transient Turing pattern for b=0.5, 6=1.94.
Time is plotted horizontally and space vertically. The color indi-
cates the value of u (scale on right).

the solid vertical line, a stable uniform steady state will be
unaffected by a spatial perturbation. For 6 between the solid
vertical line and the saddle-node bifurcation vertical line, a
Turing instability can occur and a stable ten-bump solution
forms.

Now consider b=0.5. The bottom panel of Fig. 5 shows
the solution curves for eight-, nine-, and ten-bump periodic
solutions. As @ is increased, the saddle-node bifurcation for
ten-bump solutions occurs first, then for eight-bump solu-
tions, and finally, for nine-bump solutions. For this larger
value of b, stable periodic patterns do not exist where a Tur-
ing instability can arise. The dominant unstable wave num-
ber is k,=0.9. Thus a Turing instability will give rise to a
nine-bump periodic pattern for the range of 6 between the
vertical lines for the n=9 Turing instability and the saddle-
node bifurcation of the two nonzero fixed points. The nine-
bump periodic pattern will only be seen transiently as the
system moves to the spatially uniform zero steady state. This
provides an explanation for the behavior seen in Fig. 4. For
low values of b, stable periodic patterns exist for the param-
eter values at which the spatially uniform state becomes un-
stable, and it is to those patterns that the system moves. For
higher values of b, stable periodic patterns do not exist for
values of # at which the Turing bifurcation occurs; they have
been destroyed in saddle-node bifurcations. Thus an approxi-
mately periodic pattern arises from the Turing instability, but
the system must move to a stable state which is not spatially
periodic, in this case the spatially uniform state u=0.
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FIG. 5. Top: Solution curves for n-bump periodic patterns for
b=0.25 (n=10,9,8 from right to left). Solid line for stable solution
and dashed line for unstable solution. The vertical lines give the
Turing instability for n=10,9,8 (dashed, solid, dashed-dotted, re-
spectively). Also shown is the curve of saddle-node bifurcations of
the upper and middle fixed points (circles joined by solid line).
Bottom: Solution curves for n-bump periodic patterns for b=0.50
(n=9,8,10 from right to left).

The different types of behavior are explained by Fig. 6,
where we plot saddle-node bifurcations of spatially periodic
patterns, and Turing instabilities, in the (6,b) plane. There is

a value of b,b say, at which the first Turing instability (n
=9) occurs at the same value of # at which the nine-bump
periodic solution is destroyed in a saddle-node bifurcation.
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FIG. 6. Curves of saddle-node bifurations of n-bump periodic
patterns (bold lines) and curves of Turing instabilities for n
=8,9,10 (dashed-dotted, solid, and dashed, respectively).
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FIG. 7. Plot of In(7) as a function of In(6— 6%) where T is the
length of time a transient nine-bump structure is present for b
=0.4825 and 6. The saddle-node bifurcation of nine-bump periodic
patterns occurs at ¢*. The fitted line has a slope of —0.50071.

We see that b~ 0.4828. Thus for b > b only transient patterns

appear, while for b<<b the patterns created in the Turing
bifurcation can be stable and hence permanent, or both per-
manent patterns and unstable (transient) patterns can appear,
depending upon the value of 6.

E. Scaling

The transient behavior described above is caused by the
system passing close to a region of phase space in which (for
nearby parameter values) there was a corresponding stable
periodic pattern. The effect of such a “ghost” is well known
in relation to type-I intermittency [28] and has been de-
scribed in chemical systems [26]. It can be shown that for
fixed b, the length of time spent in the vicinity of the previ-
ously stable structure (in this case, a periodic pattern) scales
as (6—6*)""2, where the periodic pattern is destroyed in a
saddle-node bifurcation as 6 increases through 6*.

The easiest place to observe this scaling is for b slightly

less than l;, since we can then make 6— #* arbitrarily small,
and have the spatially uniform state unstable to spatially pe-
riodic perturbations. We set b=0.4825, vary 6 near ¢* and
measure 7, the length of time for which a transient nine-
bump structure is present. In Fig. 7 we show In(7T) versus
In(6- 6*), together with the least-squares fit straight line
through the data points. The straight line has slope of
—0.50071, in excellent agreement with the predicted value of
—1/2 for this type of intermittency. These results show that
by tuning parameters of the system, arbitrarily long tran-
sients can be produced.

F. Two spatial dimensions

We can extend the analysis to two spatial dimensions but
over an infinite domain. The correction term for the finite
domain is expected to have a small effect. The equation for
the onset of instability in two dimensions can be obtained
from Eq. (5) by removing the correction term for the finite
domain of (—=1)"¢~'%7 in the denominator and replacing the
one-dimensional (1D) wave number with the norm of the 2D
wave number.
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Turing patterns with some spatial structure are observed
in numerical simulations (not shown). We see similar behav-
ior to the one-dimensional model in that the Turing patterns
appear to be stable for small b and transient for large b.

III. CONCLUSION

We have studied pattern formation arising out of Turing
bifurcations in a recently proposed neural field model. In
contrast with the results of others [5,10,11,16,17], transient
Turing patterns were observed in some regions of parameter
space while stable patterns were found elsewhere. We pro-
vided an explanation for this by showing that transient Tur-
ing patterns occur in regions of parameter space where no
stable periodic patterns exist. By varying parameters we
were able to control the amount of time for which a transient
structure appeared, and this relationship was quantified using
the analysis of type-I intermittency [28]. Simulations in two
spatial dimensions showed the same qualitative behavior.

Macroscopic models such as the one studied here have
had a major impact on the understanding of the possible
dynamics of brain regions [3]. Our main result is the obser-
vation and analysis of transient Turing patterns. These results
suggest that transient patterns perceived during hallucina-
tions may not be the result of homeostatic processes
“quenching” activity, but rather a result of the intrinsic dy-
namics of the system itself.

APPENDIX: FOLLOWING PERIODIC PATTERNS

Here we show how to follow spatially periodic patterns in
parameter space to determine regions in which they exist and
are stable. We represent these periodic patterns using Fourier
series

u(x) = % + la,, cos(mk,x) + b, sin(mk,x)]. (A1)

m=1

Since the domain is of size 207 we take w(x) to be periodic
with period 207, writing

w(x) = % + 2 a, cos(px/10), (A2)
p=1
where
w
ap=—] wx)dx=——
2077 Q 1077
and
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2
o = —

"= 20m), cos(px/10)w(x)dx

~ 2b(b% + 1)(1 = 710
©5a{[b% + (p110)2 P + 2[B = (p/10)2] + 1}
Substituting Eqs. (A1) and (A2) into Eq. (1) we have

% + 2, [a,, cos(mnx/10) + b,, sin(mnx/10)]

m=1

%
=5 Aty

+ a, cos(px/10) | cos(py/10)fTu(y)]ldy
p=1 Q

+ > a, sin(px/10)
p=1

sin(py/10)flu(y)]dy.
Q
So for p=mn we have

ag=ay | flu(x)]dx,
Q

a, = amnf cos(mnx/10)fTu(x)ldx,
Q
and
b,, = amnf sin(mnx/10)flu(x)]dx.
Q

Note that since u(x) is periodic with period 207r/n we have

207/n
ap=naj fu(x)]dx, (A3)
0
207r/n
a,=na,, f cos(mnx/10)flu(x)]dx, (A4)
0
and
20m/n
b, = namnf sin(mnx/10) flu(x)]dx. (A5)
0

Equations (A3)—(A5) form a set of nonlinear coupled equa-
tions. These equations do not uniquely specify the solution,
since any spatial translation of u(x) is also a solution. We
thus pick one from this infinite family by imposing that a,
=0. We set b and 6, choose n, and find an initial n-bump
pattern that is a solution of Eq. (1) by solving Egs.
(A3)-(A5). We use the pseudoarclength continuation method
[29] to find solutions as parameter values are varied. Follow-
ing these patterns as 6 is increased, we find that they are
destroyed in saddle-node bifurcations, as shown in Fig. 5.
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